
December 1988 Report No. STAN-CS-88-1233

PB96-148242

A Procedural Semantics for
Well Founded Negation

in Logic Programs

by

Kenneth A. Ross

Department of Computer Science

Stanford University

Stanford, California 94305

19970609 036
Bi'XG CJIMLiXir TESFBiWST) ä

A Procedural Semantics for
Well Founded Negation

in Logic Programs

Kenneth A. Ross
Stanford University

November 1988

Abstract

We introduce global SLS-resolution, a procedural semantics for well-founded
negation as defined by Van Gelder, Ross and Schlipf. Global SLS-resolution
extends Przymusinski's SLS-resolution, and may be applied to all program?;
whether locally stratified or not.1 Global SLS-resolution is defined in terms
of global trees, a new data structure representing the dependence of goals on
derived negative subgoals. We prove that global SLS-resolution is sound with
respect to the well-founded semantics, and complete for non-floundering queries.

This research was supported by the National Science Foundation under grant IRI-87-
22886, by a grant from IBM Corporation, and by the United States Air Force Office
of Scientific Research under contract AFOSR-88-0266.

1In recent unpublished work, Przymusinski has independently described a similar extension of
SLS-resolution. See Section 3 for further discussion.

MIO QXTALHY IKEFEÜTEBO 8

1 Introduction

Much recent work has been concerned with negation in logic programs. Extending
Horn clause programs to allow negation has not been a straightforward task, and
various alternative semantics have been proposed. These proposals have come from
both the logic programming community and the deductive database community, and
the various approaches attempt to give an intuitive meaning to negation incorporating
some form of default reasoning.

The first approach, due to Clark [Cla78], was to define the "completion" of a
program. The semantics of the program is then given by the logical consequences
of the completion. For a detailed description of this approach see [She85, She88,
Llo87]. An alternative approach was taken by Fitting [Fit85] and Kunen [Kun87],

who interpreted the completion in terms of 3-valued logic in order to overcome some
anomalies with the completion when interpreted in a 2-valued sense.

Based on the completion, Clark proposed a top-down procedural semantics known
as "Negation as Failure," which when combined with SLD-resolution [VEK76] is
referred to as SLDNF-resolution. This method is sound with respect to the completion
of the program, and is complete for Horn programs (possibly with negative subgoals
in the goal only).

Another approach was taken by Przymusinski [Prz88c]. Przymusinski defined
the class of "perfect models" of a program, and argued that the semantics of the
program be given by the logical consequences of the (unique) perfect model. For
locally stratified programs (and hence also for stratified programs [CH85, ABW88,

VG86]) there is guaranteed to exist a unique perfect model, so the semantics is well-
defined in these cases.

Based on the perfect model approach, Przymusinski introduced SLS-resolution
[Prz87]. SLS-resolution is a top-down procedural semantics that uses an extension of
SLD-resolution to answer queries. Przymusinski showed that for stratified programs
with non-floundering queries, SLS-resolution is sound and complete with respect to
the perfect model of the program. Unfortunately, SLS-resolution is not effective.
However it was argued in [Prz87] that SLS-resolution may be considered a theoretical
construct, an ideal query answering procedure to which various effective approxima-
tions may be compared.

Various other approaches have been proposed. Minker's "Generalized Closed
World Assumption" [Min82] which is based on minimal models is closely related
to McCarthy's "Circumscription" [McC80]. Gelfond and Lifschitz have defined the
class of "Stable Models," and argued that the semantics of a program be determined
by these models [GL88]. In the context of disjunctive databases, Ross and Topor
have introduced the "Disjunctive Database Rule" [RT87].

As a development of these approaches, Van Gelder, Ross and Schlipf [VGRS88a]
introduced the "Well-Founded Semantics" for logic programs with negation. For a
discussion of the relationship between the well-founded semantics and the various

other semantics see [VGRS88a].

The purpose of this paper is to present a top-down procedural implementation of
the well-founded semantics. We call this procedure, which extends SLS-resolution,
"Global SLS-resolution." We show that for arbitrary programs with non-floundering
queries, global SLS-resolution is sound and complete with respect to the well-founded
model of the (augmented) program. (What we refer to as completeness some authors
call "partial completeness" to indicate possible non-termination.) As with SLS-
resolution, global SLS-resolution is not effective in general, but may be considered a
theoretical construct.

1.1 Terminology

In this section we describe our notation, and the class of logic programs we consider.
Where possible, we use the standard terminology of [Llo87].

Definition 1.1: A normal program clause is a clause of the form

A*-Lx,...,Ln

where A is an atom, and Li,..., Ln are (positive or negative) literals. We refer to A
as the head of the clause and X1}..., Ln as the body of the clause. All variables are
assumed to be universally quantified at the front of the clause, and the commas in
the body denote conjunction. If the body of the rule is empty, we may omit the "«—"
symbol.

A normal logic program (abbreviated to program hereafter) is a finite set of pro-
gram clauses. □

Definition 1.2: The Herbrand universe of a program P is the set of all variable-free
terms that may be formed from the constants and function symbols appearing in P.
If there are no constants in P then we treat P as if it had a single extra constant
symbol. □

Definition 1.3: A query is a set of literals. We interpret a query Q as the conjunction
of the literals it contains. We use the notation <— Q to denote a goal, so that resolution
may be applied directly to the goal. A ground substitution for a goal G is a substitution
of terms from the Herbrand universe of the program for all the variables in G. □

Definition 1.4: A computation rule is a rule for selecting one or more literals from a
query. Note that it may depend on the previous queries as well as the current query.
a

Definition 1.5: The Herbrand instantiation of a logic program is the set of rules
obtained by substituting terms in the Herbrand universe for all the variables in
each rule in every possible way. An instantiated rule is an element of the Herbrand

instantiation. □

Definition 1.6: Let 5 be a set of literals. We denote the set formed by taking the
complement of each literal in S by -> • S.

• We say that the literal q is inconsistent with S if q G -> • S.

• Sets of literals R and S are inconsistent if some literal in R is inconsistent with
S.

• A set of literals is inconsistent if it is inconsistent with itself; otherwise it is
consistent.

The set of positive literals in S is denoted by pos(S), and the set of negative literals
by neg(S). □

Definition 1.7: Given a program P, a partial interpretation 7 is a consistent set of

literals whose atoms are in the Herbrand base of P. A total interpretation is a partial
interpretation that contains every atom in the Herbrand base, possibly negated. (Note
that ours is a "3-valued" definition of "interpretation.")

A total model is a total interpretation such that every instantiated rule is satisfied.
A partial model is a partial interpretation that can be extended to a total model. D

2 Unfounded Sets and the Well-Founded Seman-
tics

In this section we present the definition of the well-founded semantics for logic
programs. For a more detailed presentation with examples see [VGRS88a].

Definition 2.1: Let P be a program and H its Herbrand base. Let I be a given
partial interpretation. We say A C H is an unfounded set of P with respect to I if
each atom p G A satisfies the following condition: For each (Herbrand) instantiated
rule r of P whose head is p, at least one of the following holds:

1. The complement of some literal in the body of r is in I.

2. Some positive literal in the body of r is in A.

A literal that makes either of the above conditions true is called a witness of unus-
ability for rule r with respect to I. □

Definition 2.2: The greatest unfounded set of P with respect to I, denoted by Up(I),
is the union of all sets that are unfounded with respect to I. (The "greatest unfounded
set" is easily seen to be an unfounded set.) □

Definition 2.3: Mappings TP, Up and Wp of partial interpretations to partial in-
terpretations are defined as follows.

• p £ Tp(I) if and only if there is some (Herbrand) instantiated rule r of P such
that r has head p and each literal in the body of r is in I.

• Up(I) is the greatest unfounded set of P with respect to /, as in Definition 2.2.

• Wp(I) = Tp(I) U - • UP(I). O

It is straightforward to show that Wp is monotonic, and so has a least fixpoint.
We denote this least fixpoint by MWF(P), and call this the well-founded (partial)
model of P.2 Note that MWF{P) is a "three-valued model." A ground atom A may
appear positively, negatively or not at all in MWF(P)-

For ground queries Q - {p1;... ,pn, -.gi,..., -,qm}, MWF(P) (= Q if and only if

Q Q MWF(P)- Also MWF(P) |= -iQ (the negation of the conjunction of elements of
Q) if and only if either some q, or some ->Pi is in MWF(P).

We write MWF(P) h VQ, where Q is a query or negated query, possibly containing
variables, to mean MWF(-P) 1= Qo. for every ground substitution a of terms from
the Herbrand universe for the variables of Q. We write MWF(P) |= 3Q, to mean

MWF{P) f= <?<* for some ground substitution a. Adopting such a definition of "|="
is equivalent to considering only Herbrand models of MWF(P). Restricting attention
to Herbrand models of the augmented program is justified in Appendix A.

We now give an alternative definition of the well-founded partial model that has
technical advantages for the proofs of our results. Define

fp(I) = TP(I) U /.

Since T is monotonic, so is f. Let Vp be defined by

VP(I) = (Ö f*(I)) U -, • Up(I).

Again VP is monotonic, and has a least fixpoint. We can construct the least fixpoint
of Vp by the following transfinite iteration.

Definition 2.4: Let a and ß be countable ordinals. The partial interpretations Ia

and J°° are defined recursively by

1. For limit ordinal a,

Ia = U Iß

Note that 0 is a limit ordinal, and I0 = 0.

2. For successor ordinal a + 1,

/«+i = VP{Ia)

3. Finally, define

I°° = Ula a

Following [Mos74], for any literal p in I°°, we define the stage of p (written stagep) to

be the least ordinal a such that p G Ia. The above definition implies that the stage
is always a successor ordinal for literals in I°°. D

2For a justification that it is a partial model see [VGRS88a].

It is straightforward to show that the sequence of partial interpretations Ia is

monotonically increasing, i.e., Iß C Ia if ß < a.

Lemma 2.1: I°° is the least fixpoint of VP, and is equal to MWF(P).
Proof: That I°° is the least fixpoint of VP is a consequence of classical fixpoint results
of Tarski for monotonic operators over complete lattices. It is clear by the definitions
of VP and WP that for every partial interpretation I, WP{I) C VP(I), and hence

MWF(P) C I°°.
We now define a sequence of partial interpretations that is similar to the sequence

of Definition 2.4, except that we iterate WP rather than VP. Let a and ß be countable
ordinals. The sets I'a and MWF{P) of partial interpretations are defined recursively

by

1. For limit ordinal a, I'a = U I'ß. 0 is a limit ordinal, and I0 = Q.
ß<a

2. For successor ordinal a + 1, J„+1 = WP(I'a)

3. Finally, M^F(P) = U I'a

From the definitions of Ia and J^, it is easily shown by induction that Ia C J^aJ

where ua is the ordinal product of u and a. The proof uses the observation that T
is continuous, and hence has closure ordinal w. Hence I°° C MVTF(P), and the result

follows. |

3 Global Trees and Global SLS-Resolution

In this section we define SLP-trees, which form the basis of the definition of Global
Trees. These in turn form the basis of the definition of global SLS-resolution.

Definition 3.1: Let R be a computation rule. We say that R is safe if it never
selects a non-ground negative literal from a query. We say that R is positivistic if
it selects positive literals ahead of negative ones. A positivistic rule R is negatively
parallel if given a query containing only negative literals, it selects all (and only)
the ground negative literals appearing in the query. The positivistic and negatively
parallel conditions imply safety; a positivistic and negatively parallel rule is said to

be preferential. □

In order to achieve soundness in a derivation, we require the computation rule to
be safe. As we shall see, in order to achieve completeness of global SLS-resolution
with respect to the well-founded semantics we will require a positivistic and negatively
parallel computation rule. We now define SLP-trees. The "SLP" stands for "Linear

resolution using a Positivistic Selection rule."

Definition 3.2: (SLP-trees) Let G be the goal «- Q and let R be a positivistic

computation rule. We define the SLP-tree TG for G. The root node of TG is G. If

the goal H =«- Q' is any node of TG then its children are obtained as follows:

6

• If Q' contains a positive literal then the literal L selected by R from Q' must
be positive. In this case, the children of H are all goals K that can be obtained
by resolving H with (a variant of) one of the program clauses over the literal L
using most general unifiers. If there is no such K then H has no children, and
is a dead leaf.

• If Q' is empty, or contains only negative subgoals then Q' is an active leaf.

A branch of TQ is an acyclic path from the root of TG- We associate with each active
leaf L its computed most general unifier, which is the composition of the most general

unifiers used along the branch to L. Ü

See Example 3.1 for examples of SLP-trees. We now define the global tree for a
goal in terms of SLP-trees. The global tree may be thought of as an "OR/NOR" tree

in the style of AND/OR trees.

Definition 3.3: We define the global tree TG for a goal G. The nodes of TG are
of three types: negation nodes, tree nodes, and non-ground nodes. Tree nodes are
actually SLP-trees for intermediate goals. The root of TG is the SLP-tree for the goal
G. An internal tree node is a tree node that is not the root.

Let Tg be any tree node of TQ- The children of TJJ are negation nodes, one
corresponding to each active leaf of Tg.

Let J be any negation node, corresponding to the active leaf *— Q. Let Q =

{"■^l) • ••) ~"ln} where n > 0. J has n children, one corresponding to each (&. For
i = 1,..., n, if g,- is ground then the child corresponding to <& is the tree node T!_qi;
otherwise the corresponding child is a non-ground node. Non-ground nodes have no

children.
Every node has associated with it a status (either successful, failed, floundered or

indeterminate) according to the following rules. Successful and failed nodes also have

an associated level.

1. Every non-ground node is floundered.

2. If some child of a negation node J is a successful tree node, then we say that J
is failed. The level of J is the minimum level of all its successful children.

3. If every child of a negation node J is a failed tree node, or if J has no children,
then we say J is successful. The level of J is the least ordinal upper bound of
the levels of the children of J. (If J has no children, then it has level 0.)

4. If at least one child of a negation node J is a floundered node, and all children
of J are not successful, then we say that J is floundered.

5. If every child of a tree node T is a failed negation node, or if T is a leaf of TG

(i.e. T has no active leaves) then we say T is failed. The level of T is a + 1,
where a is the least ordinal upper bound of the levels of the children of T. (T

has level 1 if it has no children.)

6. If some child of a tree node T is a successful negation node, then we say T is
successful. An internal tree node T has level one more that the minimum level
of all its successful children. The root tree node may have several associated
levels, one for each successful child; the level of the root tree node with respect
to such a successful child is one more than the level of the child.

7. If at least one child of a tree node T is a floundered negation node, then we say
that T is floundered.

8. Any node that is successful, failed or floundered according to the above rules is
said to be well determined. Any node that is not well determined is said to be

indeterminate. □

See Figure 4 in Example 3.1 for an example of a global tree. Note that the
definition of the global tree itself is top-down, but that the status of the nodes as
successful, failed or floundered is defined bottom-up. The correspondence between

the level of a goal and the stage a literal is put in to the well founded model by
iterating Vp will be discussed in Section 4.

Let L be an active leaf of a tree node in TQ- We may say that L is successful,
failed, floundered or indeterminate if the corresponding negation node is respectively
successful, failed, floundered or indeterminate. We may also say that the goal G is
successful, failed, floundered or indeterminate if TQ is respectively successful, failed,
floundered or indeterminate in TQ.

Definition 3.4: Let G be a goal. A successful branch of TQ is a branch of TQ that
ends at a successful leaf. An answer substitution for G is given by 6 = 6\B2 ■ ■ ■ 0n

where the &i are the most general unifiers used at each step along a successful branch
of TQ. In other words, an answer substitution is the computed most general unifier
at a successful leaf. D

A tree node may be both successful and floundered, although no other pair of
statuses is possible for a single node. The reason the root tree node is treated
differently in rule 6 above is that there may be different answer substitutions for
the goal that succeed at different levels. Internal tree nodes have ground goals, and
so there cannot be multiple answer substitutions. If we need to distinguish between
levels of a goal G with answer substitutions 0l5 82,... (each corresponding to a distinct
leaf) then we will refer to the level of G with respect to 0; for each i. Failed goals have
a unique level.

We may consider a non-ground node as a special type of tree node, in which case
TQ is a bipartite graph. For every active leaf of a tree node T there will be an edge
from T to a negation node. A branch from a negation node to a tree node denotes
(negated) membership in the corresponding subgoal.

Definition 3.5: Global SLS-resolution is the top-down process of finding all answer
substitutions for a goal G using a preferential computation rule. When a derived goal

G' containing only negative literals is encountered, the appropriate SLP-trees for the

complements of the ground literals in G' are recursively constructed in parallel. □

8

Global SLS-resolution is, in essence, an appropriate traversal of the global tree
for a goal. This process incorporates the traversal of the SLP-trees corresponding to
the tree-nodes of the global tree. Selecting a positive literal from a goal corresponds
to moving one node deeper in the SLP-tree for the current goal; selecting negative
literals corresponds to moving one level deeper in the global tree, by passing through
a negation node.

Observe that a goal can have an infinite level even if it involves only finite recursion
through negation.

Example 3.1: (Van Gelder) Let P be the program

e(«(0),*(*(0)))
e(s(0),0)

e(s(X),s(s(X)))<-e(X,s(X))
e{s(X),0)<-e(X,0)

w(X)+—<u(X)
u(X)^e(Y,X)^w(Y)

Let i, Wi and u< be abbreviations for 5^(0), T^^o)) and T,_u(,i(o)) respectively:- Then
the appropriate SLP-trees and global tree for the goal <— w(0) are given in Figures 1
to 4. We use the symbol • to denote negation nodes, and omit the "<—" symbol from
goals for clarity.

w(i)

-ITJ(Z)

Figure 1: SLP-trees Wi, for i > 0

u(i)

e(Y,i),^w(Y)

I
ti(l) e(Y',i-l),-^w(Y')

e(Y,l),^w(Y)

e{Y^-2\2),-^w(Y^-2y>)

I \
(t-1) eC**-1),!),-!«^-!))

Figure 2: SLP-trees ux and Ui for i > 2

ti(O)

I
e(Y,0),^w{Y)

I \
-w(l) e{Y',Q),-iw(Y' + l)

I \
-w(2) e(Y",0),^w{Y" + 2)

I
-w(3)

Figure 3: SLP-tree u0

For n > 1, the goal <- w(sn(0)) has level 2n, and so the goal <- w(Q) has level
Lü + 2. Note that <— w(0) has infinite level despite the fact that every branch of the

global tree for <— w(0) is finite. Note that this program does have a well-founded
total model, in which w(0) is true, even though it is not locally stratified. □

In order for global SLS-resolution to find all answer substitutions, and not get
"lost" down an infinite branch of an SLP-tree, an appropriate method for searching
SLP-trees (such as breadth first search) is needed. For well-determined goals, global
SLS-resolution will (given infinite time) traverse the appropriate global tree. For goals
that are indeterminate, global SLS-resolution will recurse through an infinite number
of negation nodes. For a discussion of the non-effectiveness of global SLS-resolution
see Section 7.

There is a close relationship between global SLS-resolution and SLS-resolution.
The first difference is that we insist the computation rule be preferential. This
restriction is necessary to achieve completeness over the broader class of all programs.
(Recall that SLS-resolution is not well-defined for programs that are not locally
stratified.)

The second difference is that the definition of SLS-resolution requires a level
mapping to be associated with the literals and goals simply in order to define the SLS-
tree for a goal. Our construction relaxes this requirement by allowing all subsidiary
SLP-trees to be constructed recursively.

In recent unpublished work [Prz88a], Przymusinski independently defines a similar
extension of SLS-resolution using induction on what he terms the "generalized stratifi-
cation" of a program. Generalized stratification corresponds roughly to what we have
called the level of the global tree for a goal. One advantage of our construction is that
the level is a consequence of the definition of global trees, rather than a precondition
of its definition.

Another advantage is the explicit representation of the global tree, in which infinite
branches correspond to indeterminate derivations. Przymusinski's definition only
allows selection of subgoals that are known to be well-determined at lower level.
However, in a top-down system, the status of subgoals is unknown until they are
themselves expanded, and so such a restriction on the selection of subgoals is unlikely

10

w0

U0

1 I \
• • •

W! w2 wz •■•

• • •

m u2 u3

• •

w-i w2 •■■

• •

U-L U2

Figure 4: Global tree for «— w(0). Each W{ is successful, and each Ui is failed.

to be useful.

Observe that if R is not positivistic, then we will not be able to achieve complete-

ness.

Example 3.2: [PP88] Let P be the program

q<—r, ->p
r*-p,-^q

s*——<p, ~<q, —ir

The model {s} for P is well-founded. However, consistently expanding the leftmost
literal first (i.e. -15 before q in the first rule) will give us an apparently indeterminate

result rather than a successful result for the goal <— s. ü

Sequential expansion of ground negative subgoals rather than a parallel expansion

is not sufficient to achieve completeness.

11

Example 3.3: Let P be the program

p(a;)<—'p(/(aO)
9<—p(a),-.a

If a computation rule R chooses the leftmost negative literal first, then the goal <— q
will appear to be indeterminate, although ->q is in the well-founded (partial) model
{s, ->q} for P. However, expanding both negative subgoals in the rule for q in parallel
causes q to fail. Ü

Since only ground negative literals are expanded, they may be processed indepen-

dently. We do not apply the same parallelization to positive literals, as they may
generate competing bindings, and we do not want to have to resolve such conflicts.

4 Ground SLP-Trees and Ground Global Trees

In the following sections we will present our results on the soundness and completeness
of global SLS-resolution. First, though, it will be convenient to consider a simplified
version of SLP-trees, which we call ground SLP-trees. Ground SLP-trees are SLP-
trees in which all goals are ground, and rules used in the construction of branches of
the SLP-tree are instantiated rules. Ground global trees are constructed from ground
SLP-trees in a similar way to the construction of global trees from SLP-trees.

We will obtain a new characterization of the well-founded model in terms of ground
global trees, that facilitates the proof of soundness and completeness in the general
case.

Definition 4.1: (Ground SLP-trees) Let G be the ground goal <— Q and let R be
a positivistic computation rule. We define the ground SLP-tree TG for G. The root
node of TG is G. If the (ground) goal H =<— Q' is any node of TG, then its children
are obtained as follows.

• If Q' contains a positive literal, then the literal L selected by R from Q' must be
positive. In this case, the children of H are all goals K that can be obtained by
resolving H with an instantiation of one of the program clauses over the literal
L. If there is no such K then H has no children, and is a dead leaf.

• If Q' is empty, or contains only negative subgoals then Q' is an active leaf.

The depth of a node in a ground SLP-tree T is the number of edges in the shortest
path from the node to the root of T. □

There is a structural similarity between SLP-trees and ground SLP-trees that will
be made precise in Section 5. Since the Herbrand universe of the program may be

infinite, there may be infinitely many instantiated rules with a given head. Hence, a

12

ground SLP-tree may have an infinite branching factor at any node. SLP-trees have

a finite branching factor.
The ground global tree T9

G for a (ground) goal G is defined like the global tree for
G except that tree nodes are ground SLP-trees rather than SLP-trees. A goal may be
ground successful, ground failed or ground indeterminate in the same way that goals
are successful, failed or indeterminate respectively. The difference is that the ground
global tree is traversed rather than the global tree. Since all goals appearing in ground
SLP-trees are themselves ground, there are no floundered nodes in a ground global

tree.
For both global trees and ground global trees, the position of a tree node in the

tree does not affect its status. More precisely, if G is a goal, and TG appears in TH for
some goal H, then TG is successful, failed, indeterminate or floundered in TR if and
only if it is respectively successful, failed, indeterminate or floundered in TG, since
the status of a tree node only depends on its descendants. A similar property holds
for ground global trees. Further, since the level of a goal also depends only on its
descendants, the level of G is identical in Tg and TG. Hence we shall not refer to
the appropriate global tree when discussing the status or level of a goal appearing

therein.
On every branch to an active leaf of a ground SLP-tree, every positive literaj must

eventually be selected, as active leaves contain only negative literals. Further, since
there is no interaction between positive literals in a ground goal, the order of selection
of the positive literals in a path to an active leaf is not important. Hence, the set of
active leaves in TG for a given ground goal G is independent of the computation rule
used, as long as the rule is positivistic. Since the status of goals in TG depends only
on the active leaves of its tree nodes, we may conclude that the semantics induced by

1% is independent of the computation rule used.3

In light of this observation, we have the following result.

Lemma 4.1: Let G be the ground goal <— pi,..., pn, ->gi,.. -, -<qm- Then L is an
active leaf of TG if and only if there exist active leaves Li,...,Ln of T£.pi,..., Tf_Pn

respectively such that L = Lx U ... U Ln U {-^i,..., -^m}. Further, the depth of L

in TG is equal to the sum over all i of the depths of Li in Tf_pi.
Proof: Since L is an active leaf independent of the computation rule, we may choose
any positivistic computation rule for TG. Let R1,...,Rn be arbitrary positivistic
computation rules for T*_ ,...,Tf_Pn respectively. Let R be the computation rule
that first simulates R\, expanding all "descendants" of p1} then R-i,Rz and so on

until Rn.
L is an active leaf, at finite depth, if and only if each segment of the path to L

in TG (corresponding to Ri,... ,Rn respectively) is finite, and does not terminate in

a dead leaf. This occurs precisely when each T*_p. has an active leaf, say Li, and
L — Li U ... U Ln U {->qi,..., -*qm}. The relation between the depths of the leaves is

obvious from the construction. |
3In the more general case of SLP-trees, the set of leaves is again independent of the computation

rule used. Such a result may be proved using a "switching lemma." See [Llo87] for details.

13

Lemma 4.2: Let p be a ground atom, and let G be the goal <— p. Let S+ be a set
of positive ground literals, and S~ a set of negative ground literals. Then

OO — -

1. p G Ö Tp(S~) 4=*> TQ has an active leaf whose members are all in S~.

2. p G Up(S+) <=>• every active leaf of TG has a member in -^ ■ S+.

Proof:

(1, =>) If p G U TJ,(5-) then p G f S(5") for some finite k > 1. We prove by induction
t=i

on k that for all p,

p G TP(S~) => TQ has an active leaf whose members are all in S~.

Base Case: p G Tp(S~) <==> there is some instantiated rule r with head p

and (negative) literals from S~ in the body. By definition, this holds if

and only if TG has an active leaf (at depth 1) whose members are all in

Induction Step: Suppose the statement above is true for k = N. We show
it is also true for k = N + 1. Let p G fp+1(S-). Then there is some
instantiated rule r with head p such that all literals /i,..., ln in the body of
r are in Tp(S~). Since the only negative elements of Tp(S~) are actually
in 5", all of the negative literals in {Z1;... ,ln} are in S~. By the induction
hypothesis, for each of the positive literals Z;, (for i = 1,... ,m with m <
n), T^_t. has an active leaf (say Li) whose members are all in S~. Let
L = L-y U ... U Lm U {/m+i,..., ln}- Then L must be an active leaf of TG by
Lemma 4.1. Further, L C S~, thus demonstrating the result for k = N + 1.

(1, ■£=) This argument is by induction on the depth of the active leaf. We show that
if TG has an active leaf at depth d, all of whose members are in S~, then
p G TP(S~). The base case of this induction is identical to the base case of the
previous argument.

Induction Step: Suppose the statement is true for all d < N. We show it
is true for d = TV + 1. If TG has an active leaf L at depth N + 1 such
that L C S~, then some child G' of G has L as an active leaf at depth
N. Let T be the instantiated rule used in deriving G' from G, given by

P <- Pi,---,Pn,-19i,-..,-'9m, so that G' = {pi,...,pn, ->gi,... ,->*„}. By
Lemma 4.1, for every positive literal p; in G', TfLp. has an active leaf at
depth at most N, whose members are all in L, and hence in S~. By our

induction hypothesis, p; G Tp(S~). Each -><& is in S~ (since it is in L),

and hence in fj?{S-). Thus p G f^+1(5-).

(2, =>) Suppose p G C/p(5+). Then for every instantiated rule r with head p, either
some positive literal in the body is also in Up(S+), or some negative literal is in
-i • S+. Hence every goal appearing in TG has either a positive literal in Up(S+)
or a negative literal in -> • S+. Since active leaves have no positive literals, it

follows that every active leaf of TG contains a negative literal in -> • S+.

14

(2, <=) Suppose every active leaf in TQ has a member in -> • S+. We show p G Up(S+)
by constructing an unfounded set U (with respect to S+) containing p. Since
Up(S+) contains all unfounded sets, the result will follow. Let U be the set of

ground atoms defined by

U = {q : Every active leaf of Tf!_q has a member in -> • S+}

p G U by assumption. Let q' be an arbitrary element of U. We claim that every
goal appearing in Tf_q, contains either

— a positive literal p' such that p' G U, or

- a negative literal I such that I G -> • S+.

We prove the claim by contradiction. Suppose the contrary, i.e., that for some

goal H = {pi,... ,pn, -!&,..., -^qm} in T?_ql, no p{ is in U and no -.$ is in -. -S+.
Then for each p; there must be an active leaf (say Li) of T*_p. containing no
members of -i • S+ (by the definition of U, and by Lemma 4.1). Hence there
must be an active leaf L of Tf_q, that is a descendent of H, and is given by
Lx U ... U Ln U {-^i,.. •, -iqm}- But no element of L is in -i • S+, contradicting
the assumption that q* G U, and thus proving the claim.
In particular, every child of <— q' in T?_ , satisfies the above claim. But the
children of <— q' are simply the bodies of all instantated rules with q1 as head.
Any literal that makes the claim above true for such a rule body is a witness
of unusability for that rule; the claim shows that every rule for q1 has a witness
of unusability. Since q' is arbitrary, by the definition of unfounded sets, U is
unfounded with respect to S+ and the result follows.

I

The above results are false if we do not insist that S+ and S~ contain only positive
and negative literals respectively. However, as the following result shows, Lemma 4.2
is sufficient for our purposes.

Lemma 4.3: Let I be a ground literal in MWF{P)- Suppöse I G Ia+i according to
the iteration of Definition 2.4. Then

• If I is positive, then / G U Tp(neg(Ia)).
i—l

• If Ms negative, then I G -< • Up(pos(Ia)).

Proof: The proof is by transfinite induction on a.

Case 1: a is a successor ordinal. Let a = ß + 1 and assume the result for ß.

For the first part, we know / G U fP(Ia) and sole U Tp(I'a) for some finite
t=i t=i

subset I'a of Ia. (This compactness property follows from the finiteness of the
bodies of instantiated rules.) By hypothesis, and since I'a is finite, there is some

k > 0 such that all the positive literals in I'a are in fp(neg(Iß)). (T(S) 2 S

15

implies that the finite union to the kth term simplifies to the final term.) By

monotonicity pos(I'a) C f^{neg{Ia)). Hence I G U fl
P(f£{neg(Ia))), and the

result follows.

For the second part, suppose I = ->p. We know that neg(Ia) C -^■UP{pos{Iß)) by
our induction hypothesis. Hence, by monotonicity, neg{Ia) C -. • UP(pos(Ia)).

Let w be any witness of unusability for a rule r having head p, with respect to
Ia. If it; € pos(Ia) then it certainly remains a witness with respect to pos(Ia). If
w G neg(Ia) then u> € -<-UP(pos(Ia)) by the above, and hence u; is still a witness
for r with respect to pos(Ia). Hence p G UP(pos(Ia)) and Z € -> • UP(pos(Ia)).

Case 2: a is a limit ordinal. The proof in this case is a simple extension of the

arguments in the successor ordinal case. The case a = 0 is trivial since Ia = 0.

For the first part, where / is positive, the proof is essentially the same once we

observe that I'a, being finite, must be a subset of 77 for some successor ordinal
7 < a.

For the second part, observe that if I G neg(Ia) then / 6 neg(Iß+i) for some suc-
cessor ordinal ß + 1. By hypothesis, I G -> • UP(pos(Iß)), and since / is arbitrary,
ne9(I<x) C u -i • UP{pos{Iß)). We can extend the argument of the successor

ordinal case to show that neg(Ia) C U -> ■ UP(pos(I0)) implies neg(Ia) C
ß<a

-> ■ Up(U pos(I0)), by monotonicity, and hence neg{Ia) C -. • C/p(pos(/a)). The

remainder of the proof is identical.

I

Lemma 4.4: Let I be a ground literal. Then

• If / is positive, then I <E Ia+1 <==> I G U TP{neg(Ia)).

• If I is negative, then / G Ia+1 <=^- / G -> • UP(pos(Ia)).

Proof: The implications from left to right follow from Lemma 4.3. The implications
from right to left follow by monotonicity. |

We now demonstrate the precise correspondence between the well-founded seman-
tics and ground global trees.

Theorem 4.5: Let p be a ground atom, G the goal <— p and a a countable ordinal.
Then

• G is ground successful at level < a <==> p G Ia.

• G is ground failed at level < a 4=^ ->p G la-

Proof': The argument is by induction on a.

16

Case 1: a is a successor ordinal. Suppose a = ß + 1, and suppose the statement is
true for the ordinal ß.

G is ground successful at level < a
<=>■ TQ has an active leaf L — {->Pi,- ■ ■, ""'Pn}) sav> sucn that

each T£_p. (i = 1,..., n) is ground failed at level < ß

L C neg(Iß), by hypothesis

?6U ?i>(neg(I0)), by Lemma 4.2

P £ ^a) by Lemma 4.4

G is ground failed at level < a
every active leaf of TQ contains a literal ->q such that
Tl_q is ground successful at level < ß
every active leaf of TG has a member whose complement is
in pos(Iß), by hypothesis
P £ Up(pos(Iß)), by Lemma 4.2
-ip G /a; by Lemma 4.4

Case 2: a is a limit ordinal. The truth of the above statements for a = 0 is trivial.
By the construction of global trees, goals can only be successful or failed at a
level that is a successor ordinal. Also, the stage of every ground literal must be
a successor ordinal, as observed in Definition 2.4.
Let us consider first the implication from left to right. For limit ordinals a > 0,
G is ground successful (respectively, ground failed) at level < a implies that G
is ground successful (ground failed) at level ß for some successor ordinal ß < a.
Hence by hypothesis, p (~>p) is in Iß and hence in Ia by monotonicity.
Conversely, p (respectively --p) is in Ia implies that p (~<p) is in Iß for some
successor ordinal ß < a. Hence p is ground successful (ground failed) at level
< ß by hypothesis, and the result follows since ß < a.

I

Corollary 4.6: Let p be an atom, G the goal <— p and a a countable ordinal. Then

• G is ground successful at level a <==> stagep = a

• G is ground failed at level a <==>■ stage^p = a

I

Theorem 4.7: Let Q = {pi,... ,pn, -igl7..., ^qm} be an arbitrary ground query,
and let G be the goal *— Q.

• G is ground successful <=> MWF{P) |= Q

• G is ground failed <=*> MWF(P) f= ->Q

• G is ground indeterminate <=3> MWF(P) ^ Q and MWF{P) ^ """Q

17

Proof: G is ground successful if and only if each Pi is ground successful, and each qj
is ground failed, by Lemma 4.1. This happens precisely when each pi and each ->9j

is in MWF(P), by Theorem 4.5, i.e., when MWF{P) \= Q-
Similarly, G is ground failed if and only if some qj is ground successful or some

Pi is ground failed, again by Lemma 4.1. This happens precisely when some ->p; or

some qj is in MWF{P), by Theorem 4.5, i.e., when MWF(P) \= "'Q- I

5 Soundness

Now that the correspondence between ground global trees and the well founded
semantics has been established, we investigate the correspondence between ground
global trees and (general) global trees.

Lemma 5.1: Let P be a program and G a goal. Let V be an arbitrary active leaf
of TQ, with computed most general unifier 9. Then for every ground substitution 8

for GO, TQQS has an active leaf L that is an instance of L'.
Proof: Let ri,...,rn be the rules used in the branch ending in V in TQ, and let
8i,... ,8n be the corresponding most general unifiers. By definition, 9 = 9X92 ■ ■. 9n.
We prove the result by induction on the depth, n.

When n = 0, G is itself the only active leaf of TQ, with the identity computed
most general unifier. GS is then the only active leaf of TQ6, and is clearly an instance

of G.
Suppose the result is true for n = k. We show it is true for n = k + 1. Let G be

<— Pi,. ■ ■ ,Pi, """ft, • • •, _,9m> and suppose V is at depth k + 1 in TQ- Suppose that r2

is the rule p <— bi,..., by, ->ci,..., -icm', and that p unifies with Pi using most general
unifier #x. Then the resultant goal G' is

«- (Pl> •••,Pt-l,Pt+l,-- •,P/J~'9l,-- •j-'gm&l,-- • ,fy',_,Ci,...,-iCm»)0i.

(Recall that the order of literals in a goal is unimportant.)
L' is a leaf of TQ

1
 at depth k, with computed most general unifier 8' = 82 .. - &k+i-

Let 7 be a substitution such that G'O'Sj is ground. By our induction hypothesis,
there is an active leaf L of TQ,6,SI that is an instance of V. But G'8'Sj is a child of
G98 in TQ66 using the rule Ti96^ which must be ground. Hence TGes has a leaf L that
is an instance of V. Since 8 is arbitrary, the result follows. |

We now investigate the converse of Lemma 5.1.

Lemma 5.2: Let P be a program, G a goal, and 8 a ground substitution for G.
Let L be an arbitrary active leaf of TQ6. Then there exists an active leaf L' of TG,
with computed most general unifier 9, such that L is an instance of L' and 9 is more

general then 8.
Proof: (Sketch)

We may consider the branch to L in TQS as an unrestricted derivation from G,

i.e., a derivation in which we do not insist that unifiers be most general. (In the

18

ground SLP-tree, such unifiers always make the resulting goal ground.) The proof of
this lemma is then very similar to the proof of the "mgu lemma" in [Llo87], and the
details are omitted here. |

Lemma 5.3: Let G be a goal. Then

• If G is successful with answer substitution 9, then G65 is ground successful for
every ground substitution 8 for GO.

• If G is failed then G8 is ground failed for every ground substitution 8 for G.

Proof: The proof is by induction on the level of G with respect to 9. Since no goals
succeed or fail at limit ordinals (including the base case, 0), the result for limit ordinals
is trivial. We now consider the successor ordinal case.

(First part) Suppose G is successful with respect to 9 at level a, and that L =
{-■Pi,..., -^Pm} is the successful leaf with answer substitution 9. Then each pi must
be ground, and each <— pi failed at level ßi < a. By our induction hypothesis, each
*— Pi is ground failed.

Since L is ground, L must appear as a leaf of TQBS for every ground substitution
8, by Lemma 5.1. Finally, since each *— pi is ground failed, G98 is ground successful.

(Second part) Suppose G is failed at level a, and that V = {~>Pi,..., -<Pm} is an
arbitrary active leaf of TQ. Then some Pi must be ground, and <— p; successful at
level ßi < a. By our induction hypothesis, <— pi is ground successful. Since L' is
arbitrary, every active leaf of TQ contains such a ground subgoal.

Let 8 be an arbitrary ground substitution for G. Every active leaf of TQS is an
instance of an active leaf in TQ, by Lemma 5.2. Hence every active leaf of TQS contains
a literal ->q such that *— q is ground successful. By definition, G8 is ground failed.
Since 8 is arbitrary, the result follows. |

We may now prove the soundness of global SLS-resolution.

Theorem 5.4: (Soundness of global SLS-resolution) Let P be a program, and let
G =<— Q be a goal. Then

1. If G is successful with answer substitution 9 then MWF(P) \— V{QQ)-

2. If G is failed then MWF(P) 1= V(-Q).

Proof: (First part) Let 8 be a ground substitution for G9. By Lemma 5.3, G is
successful with answer substitution 9 implies that G98 is ground successful. By
Theorem 4.7, MWF(P) \= Q68. Since 8 is arbitrary, it follows that MWF{P) \= W(Q9).

(Second part) By Lemma 5.3, G is failed implies that GS is ground failed for all

ground substitutions 8 for G. By Theorem 4.7, MWF{P) |= ~~Q^ f°r a^ such 8, and
hence MWF{P) (= V(-■<?). I

19

6 Completeness

We now address the completeness of global SLS-resolution.

Lemma 6.1: (Lifting lemma) Let P be a program, G a non-floundering goal and let
8 range over all ground substitutions for G. Then

• If for some 8, G8 is ground successful then G is successful with an answer
substitution 6 more general than 8.

• If for all 8, G8 is ground failed, then G is failed.

Proof: The proof is by induction on the level of G8. (For the second part, the
induction is on the maximum over all 8 of the level of G8.) Again, since goals cannot

succeed at limit ordinals, the limit ordinal case, including the base case 0, is trivial.

(First part) Suppose G8 is ground successful at level a, and let L = {~>pi,..., ~"Pn}

be a successful leaf in TQS- By Lemma 5.2, TQ has a leaf V = {~,p'1,.. •, ^Pn} such
that each Pi is an instance of p[, and the computed most general unifier 9 at V is
more general than 8.

Since G8 is ground successful, each <— pi is ground failed at strictly lower level.
K p'i = Pi (i.e., p'{ is ground) then p\ is failed by our induction hypothesis. li p'j was
not ground for some j, then the negation node corresponding to L would have a non-
ground child. Since no <— p[can be successful (it must be either failed or floundered),
this would contradict our assumption that G is not floundered.

Hence L' is ground and every <— p\ is failed. Thus, G is successful with answer
substitution 6 more general than 8.

(Second part) Let V = {pp\, • • •, ^p'n} be an arbitrary leaf of TQ, with computed
most general unifier 0. Let 7 be a ground substitution for G6, and let 8 = 9j. Then

TGi has an active leaf L — {pP\, ■ ■ ■, ~<Pn} that is an instance of L', by Lemma 5.1.
Since G8 is ground failed by assumption, some <— pi is ground and successful at
strictly lower level.

Consider <— p'{, which is more general than <— p;. If p\ is ground, then p[= Pi and
so <— p\ is successful by the induction hypothesis. If p\ is not ground, then since G is
not floundered, some other p'j is ground and successful. In either case, V is a failed
leaf in TQ. Since our choice of L' was arbitrary, all active leaves of TQ are failed, and
hence G is failed. |

The restriction to non-floundering goals in the above lemma cannot be omitted
due to programs of the form

p(x)*—>q(f(x))
q{a)

for which the goal <— p(x) flounders, while every ground instance of this goal succeeds.
This example indicates that disallowing floundering goals altogether is perhaps too
harsh. However, if we add the rule q(f(a)) to the program above then we are faced

with somehow trying to represent the success set for <— p(x) as "x may be anything

20

except /(a)," a concept that requires a broader notion of answer substitution. Some
results in this direction have been presented in [LM86], and some more recent work
has described a process called "constructive negation" in which negative subgoals are
used to generate negative bindings [Cha88, Prz88b]. Whether such methods will be
useful in practice, or whether ground negation is sufficient for most purposes remains
to be seen. Restricting programs and goals to be "allowed" [Llo87], for example,

guarantees freedom from floundering.

Theorem 6.2: (Completeness of global SLS-resolution) Let P be a program, and
G =<— Q a non-floundering goal involving only symbols from P. Let P' be the
augmented version of P.4 Let 0 be a substitution for the variables of Q. Then

1. If MWF(P) |= 3(5 then G succeeds

2. If MWF(P) \= V(--<?) then G is failed

3. If MWF(P') 1= ^{Q4>) then G succeeds with an answer substitution more general
than (f>.

Proof:

1. If MWF{P) (= 3Q, then MWF(P) \= Qf> f°r some ground substitution 8. By
Theorem 4.7, G6 is ground successful. By Lemma 6.1 G is succeessful.

2. If MWF(P) 1= V-iQ then for every ground substitution 8, MWF{P) \= ^QS.
Hence, by Theorem 4.7 G6 is ground failed. By Lemma 6.1 G is failed.

3. (We assume <f> does not mention the symbols / or c. Extending the proof below
in the case that /or c does appear in <j> is straightforward.)

Let {x0, • • • > xn} be the variables appearing in Q4>. Let 8 be the (ground)
substitution {x0\c,x1\f(c),... xn\fn(c)} of terms from the Herbrand universe
of the augmented program for the variables in Q9. Then MWF{P') |= Q<f>8, and
so G4>8 is ground successful by Theorem 4.7.
By Lemma 6.1, G succeeds with an answer substitution 9 such that for some

substitution 7

07 = (j>8.

Now 9 cannot contain any substitutions involving /ore since G contains only
symbols from P, and the predicate p in P' appears nowhere in P. Hence the
only occurrences of / and c in the left side of the equality above are in 7. Let
7' be formed from 7 by replacing every occurrence of /'(c) by the variable x».
Then #7' = <f>, and so 9 is indeed more general than <j>.

4see Appendix A

21

We cannot substitute P for P' in the third item in Theorem 6.2 as illustrated by-
Example A.l in Appendix A. Some texts (for example [Llo87]) make the implicit
assumption that extra constants exist in order to prove completeness results. The
purpose of the augmented program is to formally include sufficiently many such
constants in the Herbrand universe.

Corollary 6.3: For non-floundering goals G =<— Q,

To is indeterminate «=> neither MWF(P) |= 3(<5) n°r MWF(P) |= V(-■(?). |

7 Discussion

The well-founded semantics is a declarative semantics that unifies a number of ap-

proaches in a robust fashion. In order to be able to use well-founded negation in logic

programs, a corresponding procedural semantics is necessary. This paper presents
such a procedural semantics. Although global SLS-resolution is not effective, as
discussed below, it may be considered an ideal query answering procedure to which
effective approximations may be compared.

Global SLS-resolution (and hence the well-founded semantics) captures the mean-
ing of all well-behaved programs in the sense that every program without infinite
recursion through negation is given a semantics in which every ground atom is either
true or false. For the perfect model approach, finite recursion through negation is
only guaranteed for locally stratified programs.

Furthermore, for programs that do involve infinite recursion through negation,
those portions that recurse infinitely through negation are left undefined, while the
remainder of the program is given the expected semantics.

There are three sources of non-effectiveness in global SLS-resolution:

1. Infinite branches of an SLP-tree are treated as failed.

2. The SLP-tree for a goal may have an infinite number of branches, (although
only a finite branching factor at any particular depth).

3. If a goal is indeterminate, global SLS-resolution will recurse infinitely through
negation.

We cannot expect to have a sound and complete implementation of the well-
founded semantics that is also effective, as in general MWF{P) is not recursively
enumerable. However, in the absence of function symbols, the Herbrand Base is

finite, and so effective procedures exist.5 Developing an effective top-down procedure
(possibly employing some form of loop checking to handle the items mentioned above)
is a topic for further research. Progress in this direction may be made by suitably
extending the procedures in [KT88, SI88].

5A polynomial time for constructing the well-founded model for function-free programs, that is
bottom-up in nature, is given in [VGRS88b].

22

Although a preferential computation rule selects positive literals ahead of negative
literals, in practice a sub-process may be spawned to expand a negative subgoal as
soon as it becomes ground. Such spawning will not only improve performance but
may allow the earlier pruning of long branches.

Note that SLDNF-resolution using a safe computation rule is sound with respect to
the well-founded semantics for all programs. However, even with a preferential com-
putation rule, SLDNF-resolution is incomplete as it does not treat infinite branches

of an SLP-tree as failed.

I would like to thank Teodor Przymusinski, Rodney Topor, Jeff Ullman and Allen
Van Gelder for helpful comments on earlier drafts of this paper.

A The Universal Query Problem

We address what has been termed the "universal query problem" [Prz87] and justify
our handling of it. The problem concerns certain anomalies that occur when working
only with Herbrand interpretations. We define the augmented program, first intro-
duced in [VGRS88a], but discussed implicitly in [Mah88], and show how this allows
us to restrict ourselves to Herbrand interpretations.

Example A.l: Consider the program P given by the single rule

p{a)

The only Herbrand model of P is {p(a)} and so Vx p(x) is true in all Herbrand models,
although it is not a logical consequence of the program. However, if we add the
apparently unrelated fact q(b) to P, Vx p(x) becomes false in some Herbrand models.
Further, no resolution-type procedure will give the identity answer substitution for
the query {p(x)}. As we shall see, Vx p(x) is not true in all Herbrand models of
the augmented program P', and so use of the augmented program overcomes such

anomalous behaviour. □

Przymusinski has studied the universal query problem (and in fact coined that
term for the problem) in [Prz87]. His solution, in the context of proving the soundness
and completeness of SLS-resolution with respect to the Perfect Model semantics, was
to consider all Perfect Models rather than just Herbrand models. These models, in
addition to being models of the program, had to be models of a set of equality axioms

known as Clark's equality axioms [Cla78].

Definition A.l: Clark's equality axioms are as follows. All axioms are universally
quantified. (Actually, the list below specifies an axiom schema rather than individual

axioms.)

1. X = X

2. X = Y =>Y = X

23

3. X = YAY=Z=>X = Z

4. X1 = Y1A...AXm = Ym^ f{Xu...,Xm) = f(Yu...,Ym) for every m-ary
function /

5. Xt = Y1 A ... A Xm = Ym =*► {p(Xu . ..,Xm)=> p{Yu ..., Ym)) for every m-ary
predicate p

6. f(Xi,... jX-m) ^ g(Yi,.. .,Yn) for any two different function (or constant)
symbols / and g

7. f(Xu ...,Xm) = f(Y1,...,Ym)^X1 = Y1A.../\Xm = Ymiox any function /

8. t[X] ^ X for any term t[X] different from X, but containing X.

Let P be a program. Then the equational theory of. P (abbreviated to ET(P)) is
the theory of the above axioms. The purpose of this theory is to insist that distinct
variable-free terms represent different domain elements. D

Definition A.2: For any program P we define the augmented program P'. Let p, f

and c be a predicate symbol, function symbol and constant symbol respectively, none
of which appear in P. Define P' = P U {p(/(c))}. □

Our motivation for introducing the augmented program is that it allows us to
overcome some well known anomalies such as in Example A.l encountered when
working only with Herbrand interpretations [VGRS88a, Prz87, Mah88] by assuring
that the Herbrand universe contains infinitely many constants that do not appear
explicitly in the program.

In function-free programs, it may not be desirable to augment the program as
above since it introduces the function symbol /. In this situation, we may augment
the program instead with the clause p(cj,..., Cn), in which case our results below
hold for expressions with at most n variables. This alternative augmentation will be
sufficient if the queries we give to a program have a bounded number of variables.

Definition A.3: Let P be a program, and let C be a class of (standard 2-valued)
models of PUET(P). We say C is restriction-closed if for every M E C, the restriction
of M to symbols appearing in P is also in C. □

Examples of restriction-closed classes of models are:

• the class of all Herbrand models of P U ET{P).

• the class of all minimal models of P U ET(P).

• the class of all perfect models of P U ET(P).

• the class of all stable models of P U ET(P).

• the class of all models of P U ET{P).

24

Definition A.4: Let P be a .program, F a set of logical formulas and C a class of

models. Then we write
\=c F

if every element of C is a model of F. We also write

\-c F

if every Herbrand model (with respect to P) in C is a model of F. □

Lemma A.l: Let P be a program, 5 a sentence involving only symbols from P and

C a class of models of P U ET[P). Then

1= S => \=H(P) $

Proof: Straightforward. |

We now investigate the converse of the above lemma. We are particularly inter-
ested in universal and existential sentences.

Lemma A.2: Let P be a program, 5 a quantifier-free formula involving only symbols
from P, and C a restriction-closed class of models of P U ET(P). Then

Proof: We argue by contradiction. Suppose |=H(P) 35 and that for some M G C,
M)£■ 35. Let M0 be M restricted to symbols appearing in P. (Note that M0 must
have at least one constant symbol.) M0 is also in C since C is restriction-closed.
Since M \= P and P is a set of clauses, M0 |= P. Similarly, M0 |= ET(P). Now
M0 \fc 35 since otherwise M0 would model some ground instance of S, and thus so
would M. But M0 is a Herbrand model of P in C, so it must model 35, thus yielding
the desired contradiction. |

Lemma A.3: Let P be a program, P' its augmented version and 5 a quantifier-free
formula involving only terms from P. Let C be a restriction-closed class of models

of P' U ET(P'). Then
ZH{P')

Proof. Suppose \=%tp>) V5. Let {xo,..., xn} be the variables in 5. Let 9 be the

substitution {x0|c,a;i|/(c),...,xn|/n(c)}. Then \=%(P.) S9. By Lemma A.2, \=c' SO.

Neither / nor c appear in P', except in the clause p(f(c)). Also, ET(P) contains
only axioms about equality. Hence, since these symbols don't appear in 5 by assump-
tion, the /'(c) terms are arbitrary. Hence we may "invert" 8 to reconstruct S, and

conclude |=c' V5. I

Lemma A.3 cannot be strengthened to models of P, as illustrated by Example A.l.
The three preceding lemmas have the following immediate result.

25

h&M V5 =► \=c' V5

Theorem A.4: Let P be a program, and P' its augmented version. Let 5 be a
quantifier-free formula involving only symbols from P, C a class of restriction-closed

models of PUET(P) and C" a class of restriction-closed models of P'UET(P'). Then

• h4(P) 35 & hc 35

• hg;*.) vs ^ l=c' V5 i

Thus, when analyzing the semantics of a program with respect to any restriction-
closed class of models, it is sufficient to consider only Herbrand models of its aug-
mented version. We consider that dealing with Herbrand models is simpler in practice,
since we only need to deal with known symbols.

Note that we cannot extend the first part of Theorem A.4 to existential formulas
over H(P') as illustrated by the following example.

Example A.2: (Przymusinski) Let P be the program

p{a)

p(b)

and let 5 be ~<p(x). Then 35 is true in all Herbrand models of P', but false in
models that do not possess additional constant symbols. Global SLS resolution would
flounder on the query -^(a:); this query is not safe. In a realistic system, such a query
would not make sense unless suitable domain restrictions were made on x, for example
by a typing mechanism. □

An alternative approach to considering the well-founded model of the augmented
program P' is to define the semantics by the class of (2-valued) "extended well
founded models" of P. An extended well-founded partial model is constructed in a
similar fashion to the well-founded partial model, except that the rule instantiations
in Definitions 2.1 and 2.3 may be with respect to any pre-interpretation containing
the Herbrand universe (i.e. not necessarily the Herbrand universe itself). An extended
well-founded model is then an extension of a well-founded partial model (with respect
to any pre-interpretation) that is total, i.e., that assigns true or false to every variable-
free atom over the pre-interpretation.

The set of extended well founded models gives a strictly weaker semantics than
our original approach. For example, 35 of Example A.2 is not implied by the class
of extended well-founded models. Nevetheless, this class is restriction-closed, and
our soundness and completeness results also hold with respect to this alternative
semantics. The set of extended well founded models is analagous to Przymusinski's
set of perfect models.

References

[ABW88] K. R. Apt, H. Blair, and A. Walker. Towards a theory of declarative

knowledge. In J. Minker, editor, Foundations of Deductive Databases

26

and Logic Programming, pages 89-148, Los Altos, CA, 1988. Morgan

Kaufmann.

[CH85] A. Chandra and D. Harel. Horn clause queries and generalizations.

Journal of Logic Programming, 2(1):1-15, 1985.

[Cha88] David Chan. Constructive negation based on the completed database.
In Proc. Fifth International Conference and Symposium on Logic Pro-

gramming, 1988.

[Cla78] K. L. Clark. Negation as failure. In Gallaire and Minker, editors, Logic
and Databases, pages 293-322. Plenum Press, New York, 1978.

[Fit85] M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of

Logic Programming, 2(4):295-312, 1985.

[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic
programming. In Proc. Fifth International Conference and Symposium

on Logic Programming, 1988.

[KT88] D. Kemp and R. Topor. Completeness of a top down query evaluation
procedure for stratified databases. In Proc. Fifth International Confer-

ence and Symposium on Logic Programming, 1988.

[Kun87] K. Kunen. Negation in logic programming. Journal of Logic Program-

ming, 4(4):289-308, 1987.

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, New

York, 2nd edition, 1987.

[LM86] J. L. Lassez and K. Marriot. Explicit representation of terms denned by
counter examples. In J. Minker, editor, Workshop on Foundations of De-
ductive Databases and Logic Programming, pages 659-677, Washington,

DC, August 1986.

[Mah88] M. J. Maher. Equivalences of logic programs. In J. Minker, editor,
Foundations of Deductive Databases and Logic Programming, pages 388—

402, Los Altos, CA, 1988. Morgan Kaufmann.

[McC80] J. McCarthy. Circumscription - a form of non-monotonic reasoning.
Artificial Intelligence, 13(l):27-39, 1980.

[Min82] J. Minker. On indefinite databases and the closed world assumption. In
Proc. Sixth Conference on Automated Deduction, pages 292-308. Springer

Verlag, 1982.

[Mos74] Y. N. Moschovakis. Elementary Induction on Abstract Structures. North-

Holland, New York, 1974.

27

[PP88] H. Przymusinska and T. Przymusinski. Weakly perfect model semantics
for logic programs. In Proc. Fifth International Conference and Sympo-

sium on Logic Programming, 1988.

[Prz87] T. Przymusinski. On the declarative and procedural semantics of logic
programs. Technical report, Univ. of Texas at El Paso, 1987.

[Prz88a] T. Przymusinski. Every logic program has a natural stratification and
an iterated fixed point model, (manuscript), 1988.

[Prz88b] T. Przymusinski. On constructive negation in logic programming,
(manuscript), 1988.

[Prz88c] T. C. Przymusinski. On the declarative semantics of deductive databases

and logic programs. In J. Minker, editor, Foundations of Deductive

Databases and Logic Programming, pages 193-216, Los Altos, CA, 1988.
Morgan Kaufmann.

[RT87] K. Ross and R. W. Topor. Inferring negative information from disjunc-
tive databases. Technical Report 87/1, University of Melbourne, 1987.
To appear in Journal of Automated Reasoning.

[She85] J. C. Shepherdson. Negation as failure, II. Journal of Logic Program-
ming, 2(3):185-202, 1985.

[She88] J. C. Shepherdson. Negation in logic programming. In J. Minker, editor,
Foundations of Deductive Databases and Logic Programming, pages 19-
88, Los Altos, CA, 1988. Morgan Kaufmann.

[SI88] Hirohisa Seki and Hidenori Itoh. A query evaluation method for strat-
ified programs under the extended cwa. In Proc. Fifth International
Conference and Symposium on Logic Programming, 1988.

[VEK76] M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic
as a programming language. JACM, 23(4):733-742, 1976.

[VG86] A. Van Gelder. Negation as failure using tight derivations for general
logic programs. In Proc. Third IEEE Symposium on Logic Programming,

Salt Lake City, Utah, September 1986. Springer-Verlag. (Preliminary
version also appears in Foundations of Deductive Databases and Logic
Programming (J. Minker, Ed.), Morgan Kaufmann Pubhshers, Inc., Los
Altos, CA, 1988.).

[VGRS88a] A. Van Gelder, K. A. Ross, and J. S. Schlipf. Unfounded sets and well-
founded semantics for general logic programs. In Proc. Seventh ACM

Symposium on Principles of Database Systems, 1988.

28

[VGRS88b] A. Van Gelder, K. A. Ross, and J. S. Schlipf. Unfounded sets and well-
founded semantics for general logic programs. Submitted for publication,
1988. (Full paper).

29

